Performance Evaluation of One-Class Classification-based Control Charts through an Industrial Application
نویسندگان
چکیده
This article examines the performance of two one-class classification-based control charts through a real industrial application. These two control charts are the kernel distance–based control chart, known as the K chart, and the k-nearest neighbour data description-based control chart, referred to as the KNN chart. We studied the effectiveness of both charts in detecting out-ofcontrol observations in phases I and II. Furthermore, a simulation study is conducted to compare the performance of the two control charts using the average run length criterion. The results of the comparative study show that the K chart is sensitive to small shifts in mean vector, whereas the KNN chart is sensitive to moderate shifts in mean vector. In addition, the article provides the MATLAB codes for the K chart and KNN chart developed by the authors. Copyright © 2012 John Wiley & Sons, Ltd.
منابع مشابه
A Self-starting Control Chart for Simultaneous Monitoring of Mean and Variance of Simple Linear Profiles
In many processes in real practice at the start-up stages the process parameters are not known a priori and there are no initial samples or data for executing Phase I monitoring and estimating the process parameters. In addition, the practitioners are interested in using one control chart instead of two or more for monitoring location and variability of processes. In this paper, we consider a s...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملControl Chart Recognition Patterns using Fuzzy Rule-Based System
Control Chart Patterns (CCPs) recognition is one the most important concepts in control chart application. Relating the patterns exhibited on the control chart to assignable causes is an ambiguous and vague task especially when multiple patterns co-exist. In this study, a fuzzy rule-based system is developed for X ̅ control charts to prioritize the control chart causes based on the accumulated e...
متن کاملNew phase II control chart for monitoring ordinal contingency table based processes
In some statistical process monitoring applications, quality of a process or product is described by more than one ordinal factors called ordinal multivariate process. To show the relationship between these factors, an ordinal contingency table is used and modeled with ordinal log-linear model. In this paper, a new control charts based on ordinal-normal statistic is developed to monitor the ord...
متن کاملOne-class classification-based control charts for multivariate process monitoring
One-class classification problems have attracted a great deal of attention from various disciplines. In the present study, we attempt to extend the scope of application of the one-class classification technique to statistical process control (SPC) problems. We propose new multivariate control charts that apply the effectiveness of one-class classification to improvement of Phase I and Phase II ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quality and Reliability Eng. Int.
دوره 29 شماره
صفحات -
تاریخ انتشار 2013